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Determination of basins of attraction for SU(2) 
dissipative models 

E S Hern6ndez and D M Jezek 
Departmento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos 
Aires, 1428 Buenos Aires, Argentina 

Received 15 October 1987 

Abstract. We propose an investigation of the properties of SU(2) non-linear Hamiltonian 
flows when a dissipative, gradient-like dynamics is superimposed. The corresponding flows 
are analysed and a method is designed to compute the boundaries of the basins of attraction 
to any desired accuracy. The shape and general features of these domains are examined 
in relation to the relative size of the dissipative component of the motion. 

1. Introduction 

General SU( n )  models enjoy a high degree of popularity in nuclear and many-particle 
physics, due to their simplicity and manageability with the help of group theory 
techniques [I 1-51. In particular, two-level models with quasispin SU(2) algebra have 
proven to be a useful tool for investigating aspects of the many-body problem in 
nuclear physics, either structural [6] or dynamical [7-121 ones. The classical phase 
flow of the SU(2) Hamiltonians, that appears in the frame of the mean-field or 
time-dependent Hartree-Fock (TDHF) theory, is a beautiful illustration of a non-linear 
symplectic, conservative dynamics [9- 121. However, a pure Hamiltonian view of 
many-particle motion cannot account for most experimental situations where macro- 
scopic systems are involved, since in such cases it is frequently observed that small 
sets of quantum degrees of freedom exhibit some sort of damping in their average 
evolution. 

With these facts in mind, we propose an investigation of the properties of SU(2) 
non-linear flows when a gradient dynamics is superimposed on the previous Hamil- 
tonian motion. The phase space of the mean field or TDHF approach is the coset S 2  = 
SU(2)/U(1), usually denoted as the ‘Bloch sphere’ [7-121; in the presence of an extra 
dissipative motion, this phase space splits into basins of attraction with well defined 
borders [ 131. The geometrical signatures of the TDHF orbits and the characteristics of 
the invariant regions of the SU(2) flows on S 2  permit an easy and fast visualisation 
of the deformed phase portrait of the dissipative evolution; furthermore, one can show 
that the trace of the basin border when the amount of damping is small provides an 
adequate indication of the shape and location of the different conservative TDHF orbits. 
One can additionally show that, in  the case of SU(2) models plus dissipation, it is 
possible to compute these boundaries to any desired accuracy. 

For this purpose this paper contains, in § 2, a short summary of the description of 
the conservative SU(2) dynamics (from the viewpoint adopted by Jezek er af [ l l ,  121) 
which concentrates on the motion of the quasispin vector given by a non-linear Euler 
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equation. In  order to include dissipation, we present, in § 3, an alternative consisting 
of the superposition of a gradient dynamics on the Bloch sphere S 2 .  In 9 4 we illustrate 
the method for drawing the boundaries of the basins of attraction and show a sequence 
of figures to discuss the evolution. The conclusions are the subject of § 5. 

2. The non-linear Euler equation in polarisation space 

The type of motion in which we are interested consists of a gradient dissipative dynamics 
superimposed on a conservative TDHF motion on the Bloch sphere. The effects of 
dissipation will be discussed in subsequent chapters. For this purpose, in this section 
we briefly recall the basic formulation [ 11, 121 of the conservative dynamics generated 
by a microscopic SU(2) Hamiltonian of the form 

A=n.j+taiJij i jk (2.1) 
where Ji are the usual quasispin vector components related to fermion creation and 
annihilation operators, n is a c vector whose z projection is the energy gap between 
the two single particle (SP) levels and a i k  is a symmetric interaction matrix. In this 
context, the x and y projections of the c vector n represent, for example, the strengths 
of two external fields to which the N-particle system may couple. 

The non-linear Hamiltonian flow on S 2  can be expressed by an Euler-like equation 
of motion for the expectation value of the quasispin operator, or polarisation vector 
[11,121, 

j = n H F ( J )  x J (2.2) 
where J = ( ~ l j l ~ )  is the polarisation of a Slater determinant ( 7 )  of N fermions in the 
two-level models [ 1-51 and nHF(J) is the self-consistent frequency 

.nH'(J) = V J ( 7 / i q  T ) .  (2.3) 
Equation (2.2) is the representation of determinantal motion, or TDHF dynamics, 

in quasispin space and it is obtained from a variational principle [7-lo]. It is useful 
to recall here that, due to a factorisation property of SU(2) coherent states [ l l ] ,  one 
can write the Hartree-Fock energy X =  ( ~ ) H ] T )  as a quadric in polarisation space, 

X ( J )  = n * J+4(x+/J)J,Jk +$.I Tr a (2.4) 
with 

,yik = ( N  - l ) a i k .  (2.5) 
It is then easy to compute the self-consistent frequency (2.3) that gives rise to the 
non-linear Euler motion described by (2.2). 

3. Gradient dynamics 

In this section, we present a way of introducing dissipative motion in SU(2) models. 
The drift of the orbit towards the local energy minimum should be provoked by a 
gradient-like velocity; in other words, by a component of the flow perpendicular to 
the equipotentials of the unperturbed motion or conservative orbits. Accordingly, in 
what follows we examine the modifications undergone by an SU(2) flow when a 
gradient-like dynamics is superimposed on the Bloch sphere. Some illustrations will 
be presented in 0 4. 
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Let us now assume a modification of the geodesic flow presented in the previous 
section, expressed by an additive contribution to the polarisation velocity, of the type, 

(3.1) J = .nHF(J) x J + f ( J )  

where f(J) is a vector function chosen so as to satisfy the conditions: 
(a) J .  J = O ,  i.e. the motion remains on the Bloch sphere, 
(b) % ( J )  < 0, i.e. the motion is a dissipative one, 
(c) the fixed points of the flow remain invariant, and 
(d) the dynamics must remain invariant under rotations in quasispin space, i.e. it 

should not depend upon the choice of the local coordinates. 
Condition (a)  requires that the vectorf(J)  is perpendicular to J at all times; this 

means the extra velocity added to the Eulerian one must be tangential to S 2 .  On the 
other hand, condition (b) can be rewritten as 

% ( J )  = V , X *  J = aHF * J = nHF * f ( J )  < 0. (3.2) 

Further specification of the vector function f(J) is provided by the requirement of 
fixed-point invariance. This means that f(JJ = 0, where J,  is a zero of aHF(J)  x J or 
a Morse i-saddle of the energy function X ( J )  restricted to the Bloch sphere. Let us 
notice that on the two-dimensional Bloch sphere, Morse 1-saddles are usual saddle 
points and correspond to either 

ny"(J,) = 0 ( 3 . 3 ~ )  

or 

a F( Js 1 It J, (3.36) 

where 

ny=a"'-(J/J2)(n"". J ) = ( J x ( V X x J ) ) / J 2  (3.4) 

is the V X  component tangential to the Bloch sphere, i.e. orthogonal to the polarisation 
J, while Morse 0-saddles (minima) and 2-saddles (maxima) only satisfy the parallelism 
condition 

a F(Jm 1 II Jm . (3.5) 

This assertion becomes clear on geometric grounds. Indeed, ( 3 . 3 ~ )  defines a two- 
dimensional saddle point due to the fact that nHF(J) changes sign in a neighbourhood 
of J,; consequently an inversion of the Eulerian flow takes place in such a neigh- 
bourhood. 

At this point it is convenient to introduce a local orthogonal (not orthonormal) 
coordinate system on the sphere consisting of the vectors a H F x  J and ayF. We can 
then express 

f(J) = a a H F X J + p R y F  (3.6) 

with constant cy and p, and observe that inclusion of the component parallel to the 
Euler velocity modifies the timescale, since (3.1) would be 

J = (1 + a ) n " ' ( J )  x J + pal"'. (3 .7)  
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In addition, the dissipativity condition (b) forces the parameter /3 to be negative. We 
then define a new timescale parameter ( 1  + a) /cos  6 and adopt, for convenience, the 
modified Euler equation 

J = c o s ( 6 ) a H F ( ~ )  xJ-s in(S)n ,HF(J)  (3.8) 

with 6 = tan-'[-P/( 1 +a)]. 
If 6 equals zero or v /2 ,  the motion is purely conservative or purely dissipative, 

respectively. Intermediate values of 6 correspond to a superposition of both dynamics 
as indicated in (3.8). 

It is now clear that this dissipative velocity vanishes at the Eulerian fixed points. 
More specifically, the saddle points defined in (3.3) preserve such character, since the 
full modified quasispin velocity in (3.1) changes sign in the vicinity of these points. 
Furthermore, one can realise that if the trajectory lies sufficiently close to an elliptic 
point (3.5), the flow velocity is the dissipative velocity -sin( S)iI,"'(J) plus a linear 
correction, 

(3.9) 

One can then visualise that flow lines near an energy minimum enter the fixed point 
while those near a maximum depart from it. The elliptic points then become either 
attractors or repulsors in the presence of the dissipative velocity; this character can be 
verified by performing a linear stability analysis of (3.1), where one can check after 
some lengthy, albeit simple, computations that the exponents are respectively negative 
and positive. 

A few algebraic steps allow one to write the equations of motion in canonical phase 
space (qHF,  PHF)  [7] associated with the modified Euler equation (3.1), as follows: 

3% 1 a% 
q = c o s ( 6 ) - - s s i n ( S ) ~  - 

aP 1-P 89 

a% a% 
a9 aP 

p = - C O S ( ~ )  --ssin(S)(l -p2)-. 

( 3 . 1 0 ~ )  

(3.106) 

Hereafter, we will consider a unit radius sphere, i.e. J = 1. We then see that the 
dissipative component of the motion in plane phase space is 'gradient-like', however 
local, since the dissipation parameter is affected by positive p-dependent factors that 
modify the strength of the gradient components in each equation. 

Furthermore, if we select an orthogonal basis of the tangent space to the (q ,p)  
space, namely u1 = (dX/dp, -a%/aq)  and u2 = (dX/dq ,  ax lap ) ,  then equations (3.10) 
can be vectorially decomposed in this basis, giving 

(3.11) 

The apparent divergence at the poles, p = *1 in ( 3 . 1 0 ~ )  is related to the impossibility 
of a one-to-one mapping of a sphere onto a plane. 

As a final remark for this section, we point out that the modified Euler equation 
has been designed so as to be rotationally invariant; equation (3.1 1) makes it evident 
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that the impossibility of mapping the poles onto a plane, together with the non-linearity 
of the coordinate transformation from the polarisation vector into canonical coordinate 
and momentum, gives rise to a non-gradient dynamics in plane phase space. 

4. An illustration 

In order to visualise the changes undergone by the TDHF flow when a gradient dynamics 
associated with some coordinate representation is superimposed, we have adopted a 
particular SU(2) Hamiltonian and computed the boundaries of the basins of attraction 
[13]. The Hamiltonian is the one proposed by Jezek et a1 [ l l ] ,  namely 

(4.1) A = E j ,  +;v{jx, j , }  
where { , }  is the usual anticommutator. The Hamiltonian expectation value on the 
Bloch sphere is 

W J )  = E ( J ,  +xJJz / J )  (4.2) 
with x = u ( N  - l ) / ~ .  The surfaces of constant energy in quasispin space are then 
hyperbolic cylinders with axis at J, = - J / x .  It has been shown [ 1 I ]  that as 1x1 increases 
from zero the absolute extrema depart smoothly from the poles where they lie if x = 0, 
and that a non-Morse critical point appears on the intersection of the equator and the 
cp = 7 meridian when 1x1 = 1. If 1x1 > 1 this point bifurcates into two saddles that 
separate from each other along the equator and into a relative maximum and a relative 
minimum that travel along the cp = 7 meridian. Furthermore, the relative extremum 
of either class lies on the other side of the equator, with respect to the corresponding 
absolute extremum. 

For a coupling constant x = 1.5 we have [ 111: ( i )  an absolute maximum (minimum) 
on the plane J ,  = 0 with J,  > 0 and J ,  > 0 ( < O )  and (ii) a relative maximum (minimum) 
on the same plane with J,  < 0 and J,  > 0 ( < O ) .  The saddle points lie on the equator 
and correspond to the intersection between the Bloch sphere and the plane J, = - J / x .  
This configuration is schematically shown in figure 1 (a  more complete drawing appears 
in figure 4 of [ l l]) .  

It is interesting as well to comment on the effects of dissipation on the saddle 
eigenvectors. The dynamical system (3.11), linearised in the vicinity of the saddle 

JJJ 

A Saddle point 
0 Absolute maximum 
o Absolute minimum 

I 
(0) 

Relative maximum 
0 Relative minimum 

Figure 1. Orbits of the conservative flow for the Hamiltonian in (4.2) for an interaction 
strength ,y = 1.5. ( a )  Projection on the (Jy, J , )  plane of the trajectories on the Bloch sphere; 
( b )  the corresponding orbits in canonical phase space. The stationary points are indicated. 
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point, permits a straightforward determination of the above eigenvectors and the 
corresponding eigenvalues, which are, in the ( q H F ,  pHF) representation, 

cos 812 
for A l  = E X  sin[cos-'(-l/x)] (4.3a) 

(4.36) 

We then recognise that the dissipation angle 6 simply measures the rotation of the 
saddle eigenvectors with respect to their directions in the conservative flow, (cf figure 
2) where they coincide with the axis in canonical phase space. The maximum deviation 
corresponds to a 7r/4 rotation, which is achieved in the purely dissipative case. 

Since the boundaries of the basin of attraction related to each local minimum are 
lines connecting saddle points with nearest-lying maxima, we propose a useful numeri- 
cal method to draw these lines to any desired accuracy. The procedure consists of the 
following steps. 

(1) Locate the saddle points. 
(2) Draw a line through each saddle (not on an eigenvector's direction); select one 

point on either half-line and evolve each of them with both the direct and the 
time-reversed Euler-plus dissipative dynamics as indicated in figure 2( a) .  

(3 )  Draw an approximate axis of the hyperbolic-like trajectories in figure 2(a),  
plot a perpendicular to the axis through the saddle, and repeat (2) as illustrated in 
figure 2 ( b ) .  

I ,  
I 

lII '. '. '. ...* 

n 

P 
[ a1 lbl 1 cl 

Figure 2. Schematic drawing to illustrate the method of tracing the basin borders. ( a )  
Points A and B are the initial conditions. The chain curves represent the direct dynamics 
and the broken curves the reversed one. ( b )  Points C and D are initial conditions lying 
on the perpendicular to the approximate axis of the curves in ( a ) .  Both of them evolve 
as in ( a ) .  ( c )  The continuous line tangential to the saddle eigenvectors represents the 
approximate exact border within the indeterminancy region defined by the broken and 
chain curves. A denotes the saddle point. 

In  this way one traces the borders of a closed region-which we shall refer to as 
the indeterminacy region (1R)-where the exact boundary is contained. If this region 
is small enough (in other words, if the four initial points are sufficiently close to the 
saddle) the reversed dynamics starting from adjacent initial conditions (in the sense 
of points A and C or B and D of figure 2( 6))  provide essentially the same curve within 



Basins of attraction for S U ( 2 )  dissipative models 2905 

plotter resolution. The exact border may then be reproduced by connecting through 
the saddle, along the eigenvector's direction, the two curves corresponding to each 
pair of adjacent starting points. This is illustrated in figure 2(c). 

The method proposed here permits the I R  to become as small as desired, through 
successive refinements of steps (1) to (3) provided that each new set of initial conditions 
lies inside the preceding IR. The accuracy limit imposed by this method implies a 
compromise with the total duration admissible for the actual computation, since the 
smaller the I R  is, the longer each dynamics takes to drive an initial condition into its 
attractor. 

Strictly speaking, it is not necessary that each initial condition evolves towards its 
corresponding attractor. However, we compute the forward evolution not only for the 
sake of elegance but because we feel that such a procedure possess extra advantages. 
On the one hand, in this way one can properly define and eventually measure the I R  

associated with each selection of initial conditions. On the other hand, the forward 
dynamics together with the reversed dynamics, permits us to draw a full orbit, whose 
axis can be approximately located. In this way one makes sure that the next two initial 
conditions can be chosen from the other side of the border as illustrated in figure 2( b) .  

Finally, we realise that if we choose another mechanism to compute these borders, 
the minimum number of initial conditions is not less than four, since at least two are 
needed to reach either of the two maxima. 

The kind of figures we can obtain is displayed in figures 3-8. In each of them, part 
( a )  shows the projections on the ( J x ,  J , )  plane of the borders of the domains on the 
Bloch sphere while part ( b )  shows the corresponding regions in phase space. These 
figures correspond to the gradient dynamics on the Bloch sphere (GDBS) for dissipation 
angles S = r r / 2 ,  31~18, ~ / 4 ,  ~ / 8 ,  1~120 and rr/40. The conservative case ( S = O )  
corresponds to figure 2 and the phase flow has been examined in detail by Jezek et a1 
[ 111. In each figure, the wider hatching indicates the basin of attraction of the relative 

q 1 2 x  

( U )  1 i 61 

Figure 3. Basins of attraction for a dissipation strength angle 6 = 7r/2, ( a )  Projections on 
the ( J , ,  J ; )  plane of the borders of the basins of attraction on the Bloch sphere evaluated 
with initial conditions on the hemisphere J, >O. ( b )  The corresponding domains in 
canonical phase space. The wider hatching indicates the relative minimum basin of 
attraction, the unshaded area is the absolute minimum basin of attraction and the closer 
hatching indicates the indeterminancy region. The orbits in ( b )  are computed employing 
initial conditions on both J, hemispheres in order to get closed curves. The stationary 
points (not drawn) are the same as in figure 1. The arrows in the flow direction are drawn 
in order to locate the maxima and the minima in the figures; those pointing towards the 
saddle indicate the location of the basins' border. 
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1 

J, I J  2 
a 

I (0) 

Figure S. Same as figure 3 for 6 = n/4. 

(0) 

Figure 6. Same as figure 3 for S = r / 8 .  

2 
a q12n 

minimum, while the unshaded region corresponds to the absolute one. We also show 
in each figure, by closer hatching, the indeterminancy region in the neighbourhood of 
the saddle point inside which we have not investigated in greater detail due to computing 
time constraints. Actually, the basin border is the trajectory passing through the 
maxima; we have plotted as well, in each figure, the corresponding trajectories into 
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I a)  I 
Figure 7. Same as figure 3 for S = a/20. 

Figure 8. Same as figure 3 for S = 7/40, 

the minima computed with the forward dynamics. The latter thus illustrate the motion 
within each basin of attraction. Additional check-up calculations have been performed, 
selecting random initial conditions on S2  and verifying the approach to the correspond- 
ing attractor, after a number of turns depending on the strength of the dissipation. 

From the examination of the sequence in figures 3-8 we observe the evolution of 
the shape of both basins of attraction as we advance towards the purely conservative 
flow, starting from the purely dissipative one according to (3.8). The trend is that of 
a continuous deformation of each basin with increasing spiralling of the corresponding 
borders. In particular, figure 8 brings into evidence the almost orthogonality of the 
projections of the trajectories in the vicinity of the saddle point; a comparison with 
the purely conservative case displayed in figure 1 permits us to verify the effect of a 
small dissipation, namely, to locally rotate the axis corresponding to the asymptotic 
planes of the hyperboloid (cf (4.3)). We emphasise that such an axis rotation is actually 
local, since as soon as they become sufficiently far apart, the trajectories develop a 
larger number of turns, the smaller the dissipation, before reaching their respective 
attractors. These observations can be dramatically verified by reference to figure 8; it 
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becomes clear that the borders of the basins are wildly oscillating trajectories whose 
arcs resemble the hyperbolic orbits of the purely conservative flow, generating in a 
rough and illustrative fashion all different coexistent regimes in that dynamics. 

5. Summary and conclusions 

In this work we have presented and analysed a possible way of transforming a 
conservative Hamiltonian SU(2) flow-however nonlinear, since it is generated by a 
Hartree-Fock Hamiltonian-into a dissipative one. 

We have illustrated the conservative-plus-gradient dynamics for a choice of an 
SU(2) Hamiltonian whose purely conservative behaviour has been already investigated 
[ I l l .  We have shown that it is possible to build up, on a numerical computation, the 
boundaries of the basin of attraction of each local minimum. In this situation we have 
analysed the evolution of these domains from pure dissipative to pure conservative 
motion. 

The characteristic feature of the dynamics proposed here is that of a rotationally 
invariant flow which does not present divergences. The modified non-linear Euler 
equation does not depend upon local coordinates and offers the possibility of drawing 
a sketch of the conservative phase flow by just locating a saddle point and evolving a 
few points lying in a small neighbourhood. We have verified that if a low dissipation 
parameter is chosen, the borders of the basins of attraction indicate the position of 
the separatrices, the shape of the conservative orbits, the different classes of coexisting 
regimes and the location of the extrema. 

Although the spirit of this work was to investigate the modifications undergone by 
the conservative non-linear Eulerian flow on the Bloch sphere in the presence of a 
gradient dynamics, we found it interesting to look at the phase portrait in canonical 
phase space (qHF, pHF), since the latter is traditional among nuclear theorists [7-121. 
It is worthwhile recalling that there actually exist several distinct mappings (not 
one-to-one) of the sphere onto a plane [13]. Since the transformations among these 
available sets of coordinates are non-linear, it is clear that a purely dissipative dynamics 
imposed on given coordinates induces a conservative plus a dissipative dynamics on 
different representations, with coordinate-dependent coefficients and which may 
include some singularities (cf (3.12)). 

In particular, the dissipative motion proposed by Gilmore [13] as a gradient 
dynamics on the set of coordinates (x, y )  = 4, sin( 8/2)  (cos cp, sin cp), where the image 
of the south pole is a circle, provides an interesting example of the above remark. 
Indeed, one can verify that when the south pole is not a critical point (i.e. for the 
Hamiltonian investigated in 0 4) the mapping of the conservative dynamics itself onto 
this flat space generates divergences in the velocity component tangential to the image 
circle; these are thus mapping-induced divergences. Now, as we consider the gradient 
dynamics, the component of VX which provides the tangent velocity in the conservative 
case now gives a contribution to the radial velocity. This means that a different class 
of singularity may arise (i.e. dynamics-induced divergences) since as one maps the 
dissipative flow back onto the sphere, one obtains infinite velocities at the south pole. 
Such a dynamics on the Bloch sphere is a meaningless representation of any physical 
process undergone by N particles in a two-level system, in addition to being unaccep- 
table on purely geometrical grounds. 
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